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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 212k

SPECTRUMS AND DIFFUSION IN A ROUND TURBULENT JET .

By Stanley Corrsin and Mahinder S. Uberoi
SUMMARY

In a round turbulent Jet at room temperature, measurement of the
shear correlation coefficient as a function of frequency (through band-
pass filters) has given a rather direct verification of Kolmogoroff's
local-isotropy hypothesis.

One-dimensional power spectrums of velocity and temperature fluctu-
ations, measured in unheated and heated Jets, respectively, have been
contrasted. Under the same conditions, the two corresponding transverse
correlation functions have been measured and compared.

Finally, measurements have been made of the mean thermal wakes
behind locel (line) heat sources in the unheated turbulent jet, and the
order of magnitude of the temperature fluctuations has been determined.

INTRODUCTION

At the present time there apparently exists no statistical theory
of turbulent shear flow. One significant theoretical consideration has
been proposed: The hypothesis of locel isotropy, originated by
Kolmogoroff (references 1 and 2). Kolmogoroff has suggested that the
fine structure in turbulent shear flow may be isotropic; recent experi-
ments of Townsend (references 3 and 4) in a turbulent wake seem to
verify this hypothesis.

In view of this situation, the various experimental researches in
the field follow two courses: Filrst, they attempt to verify or disprove
local isotropy; second, they try in all conceivable ways to make measure-
ments that may shed light upon the basic nature of the turbulent shear
flow, so that the foundations for a successful theory can be laid.

During recent years it has become evident that measurements of the
intensity of turbulence alone cannot provide sufficient information
about the statistical and dynamical properties of the flow fields. Such
quantities as correlations, spectrums, probability demnsities, the various
terms in the turbulent kinetic-energy balance, and so forth may be
expected to reveal many essential features of the problem.
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The types of turbulent shear flow that have come under close
experimental scrutiny are the boundary layer (references 5 and 6), the
plane channel (reference T), the plane wake (references 3 and L), the
plane single free-mixing region (reference 8), and the round jet (refer-
ences 9 and 10). The present work is a continuation of that reported
in references 9 and 10.

The generel objectives of this investigation have been to learn
something more about the flow in a fully developed round turbulent jet
and gbout the heat transfer in such a flow. The work reported here has
fallen into three phases: (a) An attempt to establish the presence or
absence of local isotropy, (b) a comparison of velocity- and temperature-
fluctuation fields when the over-all boundary conditions on mean velocity
and temperature are effectively the same, and (c) a study of the diffu-
sion of heat from a local (line) source in the turbulent flow.

The only specific experimental verification of local isotropy in
a turbulent shear flow to date was by Townsend in the plane wake behind
a circular rod (references 3 and 4). He found that the skewness and
flattening factors of the probability density of Bu/Bt in the shear
flow are very closely equal to those in the (effectively isotropic)
turbulence far behind a grid. Since differentiation emphasizes the
higher freguencies, his measurement shows, in essence, that the values
of certain stetistical quantities related to the smaller eddies in a
shear flow are the same as the values for the smaller eddies in isotropic
turbulence. He also found the microscale of u in the stream direction
to be nearly Y2 times the microscale of v in that direction, a relation
which is exactly true for isotropic turbulence.

Until recently, only mean-velocity and mean-temperature distribu-
tions were measured to provide a comparison of the transfer rates of
momentum and of heat in turbulent shear flows with over-ell heat
transfer. The previous report in this round-Jjet investigation (refer-
ence 10) included a beginning on the problem of direct comparison of
the velocity end temperature fluctuations as well as some measurements
of velocity-temperature correlations. The fluctuations in a warm turbu-
lent wake have been studied by Townsend.

Up to the present time, however, there appears still to be no
successful hypothesis to account for the well-known fact that heat
(and other scalar quantities, like material) is diffused more rapidly
than momentum in a turbulent flow. Thus, more detailed study of the
fluctuations seemed in order.

lprivate commnications, 1949.
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The first real analysis on the diffusive property (for scalar
quantities) of a homogeneous turbulent field was Taylor's well-known
work, "Diffusion by Continuous Movements" (reference 11).

The mean thermal wake behind a line source of heat in a flowing
isotropic turbulence has been carefully measured by Schubauer (refer-
ence 12) in the region close to the source, and by Simmons (measure-
ments reported in reference 13) over an extended range. Taylor's theory
of diffusion by continuous movements is directly epplicable to the
diffusion from a line source of heat in a homogeneous turbulent field,
and he has made a generalization to permit application of the method in
a decaying isotropic turbulence (reference 13).

In a turbulent shear flow, the only published measurements 6f the
thermal wake of a local source seem to be those of Skramstad and Schubauer
in a turbulent boundary layer.2 These were reported by the experimenters
(reference 14) and by Dryden (reference 15). The temperature distribution
across the wake in shear flow is decidedly skew. On the other hand, in
the isotropic turbulence, it is to all intents and purposes a Gaussian
curve. Of course, in a homogeneous field this curve (measured close
enough to the source so that the Lagrangian correlation coefficient is
still effectively unity) is simply the probability density of the lateral
velocity fluctuations. This relation may be roughly true for shear flow
as well, in which case the contrasting results mentioned above would mean
that the probability density of v(t) is skew in shear flow, but Gaussian
in decaying isotropic turbulence.

No measurements had been made of the fluctuations in these thermal
wekes, and it was felt that some information on the nature of these
might help further a general understanding of the diffusive process.

This investigation was conducted at the Aeronautics Department of
the Johns Hopkins University under the sponsorship and with the finan-
cial assistance of the National Advisory Committee for Aeronautics.
The authors would like to acknowledge many stimulating conversations
with Dr. L. S. G. Kovasznay, and to thank Dr. F. H. Clauser for his
helpful criticism. Donation of the hot-Jet unit by Dr. C. B. Millikan,
Director of the Guggenheim Aeronautical Laboratory at the California
Institute of Technology, is greatly appreciated. Mr. Philip Lebowitz
helped to set up much of the laboratory equipment.

2Wieghardt has recently measured the diffusion of heat from a local
source in a turbulent boundary layer (reference 16), but his source was
flush with the solid surface and thus he was studying a different
problem, that is, one more directly related to micrometeorological
conditions. .
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SYMBOLS

diemeter of orifice (1 in.)

axial distance from orifice

radial distance from Jet axis

exial component of mean velocity
radial component of mean velocity
tangential component of.mean velocity

maximum U at a c¢ross section on axis

axial component of instantaneous velocity fluctuation

radial component of instantaneous velocity fluctuation

tangential component of instantaneous velocity
fluctuation . .

instantaneous temperature difference (measured above room

temperature as reference)

mean temperature difference (measured above room
temperature as reference)

maximum mean temperature difference at a cross section

maximum mean temperature in jet at orifice

instantaneous temperature fluctuation (=6 - §)

time
voltage fluctuation

sensitivity of a diagonal hot-wire to u and to
respectively

v,
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uy' = Yug?
Vn' = {va?
nPuy

nfu,nfv
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shear correlation coefficient (uv/u'v')

instantaneous contributions of wu(t) and v(t),
respectively, in a nerrow frequency band of nominal
frequency n; in a Fourier series discussion, the
nth harmonic of periodic wu(t) and v(t), respectively

shear correlation coefficient for a narrow band of
frequencies (unvh/un'vh'); this function is referred

to as the "shear-correlation spectrum" or, briefly,
the "shear spectrum"

phase angles

: o0
in Fourier series analysis, ,Fy = ané/EE:ang,
1

[o]
nfv = b2 E::bnz, where &, and b, are Fourier
1
series coefficients
cyclic frequency in general; in particular, magnitude
of radial coordinate in three-dimensional frequency

space

cyclic frequency of one-dimensional spectrums of u(t)
and d(t)

weve-number magnitude for three—dimensiona}
spectrums (2nn/T)

wave-number magnitude for one-dimensional
spectrums (anl/ﬁ

a reference constant with dimensions of wave numbers

one-dimensional power spectrum of u(t) in terms of
wave number

one-dimensional power spectrum of u(t) in terms of
frequency )
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(k) ) three-dimensional power spectrum of velocity fluctuation

Gy (k) one-dimensional power spectrum of ¥(t) in terms of
wave number

Gy*(ny) one-dimensional power spectrum of d(t) in terms of
frequency

G(k) three-dimensional power spectrum of temperature '
fluctuation

Ry transverse correlation function of u measured symet-

rically about jet axis (uluz/;li)

R, longitudinal correlation function of u

S transverse correlation function of 4 measured symmet-
rically sbout Jet axis (9192/52)

I‘x longitudinal scale of u-fluctuations
Ay longitudinal scale of d-fluctuations
Ly lateral scale of u-fluctuations
Ay lateral scale of d-fluctuations
Ay longitudinal microscale of u-fluctuations
A lateral microscale of u-fluctuations
1 lateral microscale of d-fluctuations
2% longitudinal microscale of d-fluctuations
3 distance downétream from local heat source in x-direction
t lateral distance, perpendicular to source line, from
' local heat source
q;. dimensionless temperature ratio @/gme.x)
1= t/¢
A standard deviation of mean-temperature distribution in

wake behind local heat source

T pulse spacing
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h pulse height

J pulse width

EQUIPMENT

Aerodynamic Equipment

The l-inch hot-jet unit is shown schematically in figure 1. The
centrifugal blower is driven by a l/2-horsepower direct-current motor.
Heat is added through two double banks of coils of No. 16 Nichrome wire.
As can be seen in the sketch, a good part of the heated air is directed
around the outside of the Jet-air pipe in order to maintain a flat
initial temperature distribution in the jet. A vacuum-cleaner blower
is used to help the air through this secondary heating annulus, and this
warm air is fed back into the intake of the main blower.

The section of relatively high velocity between heaters and final
pressure box permits adequate mixing behind the grid, to insure thermally
homogeneous initial jet air.

Figure 2 is & photograph of the unit as set up previously (refer-
ence 10); the present arrangement is essentially the same.

A1l +turbulence measurements were made with an initial jet total
head in the range from 3.5 to 5.0 inches of water. In free turbulent
flows there is no detectable effect of jet Reynolds number over a much
wider range of Reynolds numbers than this.

When the jet was run unheated, there was a slight temperature rise
through the blower and duct. In the measurements of thermal wake behind
8 local heat source, correction for this ambient-tempersture field was
unnecessary. For all hot runs, the orifice air temperature was very
close to 200° C, about 175° above room temperature.

Three different "local heat sources" were used:

(a) A straight dismetrically strung wire of 0.008-inch Nichrome

(b) A 2-inch-diameter Nichrome ring

(¢) A 4-inch-diameter Nichrome ring
Because of the extremely high turbulence levels encountered in a free

Jjet, a measurable thermal wake could only be obteined by using source
temperatures in the range from 300o to 700° C. This undoubtedly led to

e e e e = e S f e T e e 4 i T e —— - ——— e mm = i e o = e
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some local buoyancy effects, but, even with this order of temperatures,
the thermal wake was barely detectable 1:inch downstream.

The Reynolds numbers of these heat-source wires were about as
follows:

For straight wire on axis,

150, based on air temperature
22, based on wire temperature

For 2-inch-diameter ring,

110, based on air temperature
16, based on wire temperature

For 4-inch-diameter ring,

59, based on eir temperature
9, based on wire temperature.

No noticeable additional turbulence was generated by these wires, and
no average momentum defect could be detected with a flattened total-
head tube, even as close as 1/% inch downstream.

Measuring Equipment

The measuring instruments used were: Total-head tube, Chromel-
Alumel thermocouple, and hot-wire anemometer (also used as resistance
thermometer).

The hot-wires were nominally 0.000635-centimeter platinum, about
1.5 millimeters in length, etched from Wollaston wire. The etched
platinum was soft-soldered to the tips of small steel needle supports.
A discussion of heat loss from a wire at various ambient temperatures
is given in appendix A.

The basic hot-wire-anemometry equipment was purchased from
Mr. Carl L. Thiele of Altadena, California. One of the two identical
heating clrcuits is shown in figure 3.

The amplifier, with resistance-capacitance compenséation network,
is given in figure 4. The uncompensated gain is constant to within
12 percent over a frequency range from 3 to 12,000 cycles per second
(fig. 5). With the wires and operating conditions used (time constants
on the order of 1 millisecond), the over-all compensated response was
good over the same range. Correct setting of the compensation network
was determined by superimposing a square wave upon the hot-wire bridge
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(reference 17). Unfortunately, in a free turbulent shear flow the
anbient disturbance is so great (because of the extremely high turbu-
lence levels) that calibration cannot be made in the flow to be studied.

The vacuum-thermocouple signal output was measured either with a
millivoltmeter or by the average deflection rate of & fluxmeter.

The various spectrums reported here were measured with a modified
General Radio Type T60-A Sound Analyzer (reference 18). The changes
in output stage (fig. 6) were made to eliminate the direct-current
component and to obtain linear instead of logarithmic response. As
modified, the sound analyzer had rather undesirable fregquency-response
characteristics, particularly a day-to-day shift in relative amplifi-
cation of the higher-frequency ranges. The frequency-response calibra-
tion in figure T is plotted in terms of voltage squared, since this was
the quantity ultimately measured.

The frequency pass band for this analyzer is far from the optimum
rectangular shape. However, the slopes of the two sides are suffi-
ciently steep that no appreciable error is attributable to noninfinite
slopes, with the spectrums measured in this investigation. Figure 8 is
an experimentally determined band shape., There was fair similerity of
band shape over the entire frequency range. For computational purposes,
an equivalent rectengular pass band was defined as indicated in the

figure.

The instrument is a type recording constant-percent band width,
measuring the product of power spectrum times frequency. This has
obvious advantages in the high-frequency range where there is so little
turbulent energy.

Possibly the chief disadvantage of the actual band shape is the
extremely sharp peak, causing a great deal of fluctuation in the output
signal, and making any simple meter-reading technique virtually impos-
gible in the low- and medium-frequency ranges. Consequently an inte-
grating technique was devised, msking use of the negligible restoring-
torque characteristics of a Sensitive Research Company fluxmeter. The
integrating technique used is shown schematically in figure 9. Actually
a bank of vacuum thermocouples was used, and the resistances shown are
Just typical values. The signal put out by the thermocouples is a
highly fluctuating direct current. -

The bucking circuit was necessitated by the folldwing combination
of requirements:

. (&) For the lowest freguencies reasonable consistency could be
obttained only by integrating over periods as long as 3 minutes
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() Appreciable static bearing friction in the fluxmeter demanded
more or less continuous motion of the needle

(¢c) The restoring torque of the fluxmeter is no longer negligible
in the range of very large deflection. Hence it was desirable to keep
total deflection to a minimum. ’

Thus, most of the. average direct-current component of the thermo-
couple signal was bucked out, and the constant bucking current was read
on a precision microammeter. The fluxmeter needle fluctuated more or
less about the zero-deflection point during the time of integration,
and its reading at the end of this time ordinarily gave a small correc-
tion on the result.

In the highest-frequency range, overload considerations on the
sound analyzer limited the signal drastically, and only a part of the
thermocouple direct current was bucked.

For the determination of average wake temperatures behind the local
heat sources, the thermacouple voltage was measured with a Leeds &
Northrup type K-2 potentiometer.

Oscillograms were taken from a blue oscilloscope tube by means of
e General Radio Type 651-AE camera, using fast film.

PROCEDURES

Velocity'Speétrum

The power (or energy) spectrum of the longitudinal velocity fluctu-
ations at a point in the unheated jet was measured by conventional hot-
wire-anemometry technique, with a continuously adjustable band-pass
filter, as described under EQUIPMENT.

Temperature Spectrum

The power spectrum of the temperature filuctuations in the heated
jet was measured by using the hot-wire effectively as a simple resis-
tance thermometer {reference 19). The amplified voltage signal was
analyzed exactly as in the measurement of. velocity spectrums.
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Shear-Correlation Spectrum .

For the shear-correlation spectrum, the quantity to be measured is
the correlation coefficient between a narrow frequency band of
u~-fluctuations and the same narrow frequency band of v-fluctuations, at
the same point in the flow field.

The method, for any particular nominal frequency, was to pass the
various voltage signals (el, €, €] + ep, ey - e2) from an X-type
shear- (or v'-) meter through the band-pass filter after amplification.
By appropriate combination of the mean-square values of these four
signals (identical with total-shear meagurement), there results

- v 1
nBuy = vy /un vy

where the subscript n indicates the narrow band of nominal frequency n
cycles per second. A Justification for the wvalidity of this procedure

is obtainable by considering the two velocity-fluctuation components as
periodic functions. OFf course, this is not s real proof.

If a symmetrical X-meter is assumed, the two instantaneous voltage
signals are

e, = ou + BV
(1)
. €y = o - gv
For periodic fluctuations,
o -
u=_ a cos (2mt + @)
n=1

} (2)

[
v=Zlbn cos (2mt + ¥p)
n=

~

In this simple case, the correlation coefficient for any spectral line
is merely

nRuy = cos ($n - ¥n) (3)
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If equations (2) are substituted into equations (1), it is easily
shown that

5 2
n®1" - n®2

cos (¢n -V¥n) = (k)

\/A(el + e2)2 n(el - e2)2

in complete analogy to the conventional method for measuring Rﬁv with
an x—meter. The algebraic details are given in appendix B.

When the meter is not perfectly symmetrical (ay # ap; By # Bg),
the formal processes, both algebraic and experimental, become excessively
involved. Consequently, in actual practice the effect of unavoidable
unsymmetry in the X-meter was essentially nullified by taking double sets
of readings at each frequency, rotating the instrument 180° gbout the
axis of flow direction between sets.

Velocity Correlation Function

The double correlation R, between longitudinal velocity fluctu-
ation at pairs of points on opposite sides of the jet axis was measured
only in the unheated jet. Hence the standard hot-wire-anemometry tech-
nique was used. The two hot-wires were always equidistant from the
axis (on. a diameter), so that they were under identical operating
conditions.

Temperatﬁre Correlation Function
In the hot jet, the wires traversing symmetrically as for Ry were
operated as simple resistance thermometers, so that the double temperature
correlation Sy could be determined directly. '
Mean Temperatures behind Local Source

To determine mean temperatures behind a local source, traverses
were made with a Chromel-Alumel thermocouple, whose voltage was measured
with a Leeds & Northrup type K-2 potentiometer.

Temperature Fluctuations behind Local Sources
To determine temperature fluctuations behind local sources, the

fine platinum wire was operated at small currents, so that it worked
essentially as a resistance thermometer.
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EXPERTMENTAL RESULTS

Mean-velocity and mean-temperature distributions for verious
orifice temperatures are presented in reference 10.

Shear-Correlation Spectrum

The spectrum of shear correlation coefficients pRyy = UpVp/up'vn'
was measured in the unheated jet at x/d = 20 at a radial station corre-
sponding to maximum shear at this cross section. Figure 10 shows quite
definitely that pRuyy(n) is a function decreasing monotonically to zero.
Thus, the hypothesls of local isotropy is seen to be verified in a very
direct way. The value of the directly measured total-shear correlation
coefficient R,y = T/u'v' is indicated in the figure.

Velocity and Temperature Spectrums

The one-dimensional power spectrum Fl(kl) of the longitudinal

velocity fluctuations u(t) was measured at two radial positions in
the unhested Jet, at x/d = 20. Figure 11 gives the two spectrums, one
measured on the axis, and one measured at about the maximum-shear .
location. Plotted against wave number (kl ;\annl/U), the two spectrums

are identical within the experimental scatter. The solid line drawn as
epproximation to the points is made up as follows:

(a) For( 0< kj <1.25, it is Von Kdrmén's semiempirical formula
reference 20): ,

E_ - Constant
Fl<ko> [1 . (ki>2:| 5/6 (.5)
5 .

(b) For k, > 1.25, = nonanalytical curve has been faired in

The Von KermAn expression was used ﬁrimarily to simplify the
problem of extrapolation to Xk; = O and to shorten the work of trans-

formation to three-dimensional spectrums. (See "Velocity and Temperature
Spectrums"” under ANALYSIS OF RESULTS.) '

The corresponding one—diﬁensional power spectrums of temperature
fluctuations Gi(k]) were measured in the heated jet (6, = 170° C)
at x/d = 20. One spectrum is on the Jet axis; one is at about the
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radial station of maximum heat transfer (and shear). From figure 12, it
can be seen that they differ noticeaebly in the high-frequency range, but
are essentially identical in the low- and moderate-frequency ranges.

The curves used to approximate the experimental points are as follows:

On the axis - the Von Kérmén formula is used over the entire range
At the maximm-heat-transfer point -

(a)-For 0 <k; <1.0, the Von Kdrmén formula is used

(b) For Xj > 1.0, a nonanalytical curve has been faired in

Figures 13 and 14 contrast velocity spectrums with temperature
spectrums at corresponding radial stations.

Transverse Correlation Functions

The double correlation function Ry = U5 /ug 'up', measured symmet-

rically about the axis at x/d = 20 in the unheated jet, is plotted
in figure 15. Of course, since the wires are in identical flow condi-

tions, w3' =up' =u' (say), and Ry = u1u2/5§.
The double correlation function Sy =379p/91'92"' in the heated

jet at x/d = 20 1is plotted in figure 16. Since this was also measured
symeetrically, Sy = ﬁlﬁe/ﬁz; where 9;' = 9o’ = 3! (say).

Clearly, the range of measurable temperature correlation exceeds
the range of measurable velocity correlation by an amount greater than
can be attributed simply to the fact that the hot Jet is wider than the
unheated Jet (reference 10).

Mean Thermal Wakes behind Local Heat Sources

Typical radial distributions of average temperature behind a .
straight (diemetrical) wire, a 2-inch-diameter ring, and a 4-inch-
diameter ring at x/d = 20 in the unheated jet are shown in figures 17,
18, and 19, respectively. The points in these figures are not direct
experimental points, but merely serve to indicate the faired results
Por different distances downstream. All these have been corrected for
the previously mentioned small smbient-temperature field in the unheated
Jet. There was rather large scatter (illustrated only in fig. 20) due
to the small temperature differences measured and to the extremely large
degree of fluctuation present. The h-inch ring is slightly outside of
the fully turbulent jet core (reference 9); comsequently the results for
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this case are not of direct interest in a study of fully developed
turbulence. The figures show that each of the thermal wakes possesses
similarity well within the accuracy of measurement.

A1l of the thermal wakes spread linearly in the measured range
(figs. 21, 22, and 23). From Taylor's theory of diffusion by continuous
movements, this simply indicates that, for the maximum downstream station
studied, the Lagrangian correlation coefficient of the v-fluctustions
has still not departed appreciably from unity.

For a straight-line source a*t the jet axis, because of conservation
of heat, it follows immediately from similarity and linear spread that
the maximum temperature at a cross section in the wake 0p,, must

decrease hyperbolically with increasing downstream distance.
Let e/bﬁax = ®(n), where n = (/% and 5 is some characteristic

width of the wake, for example, the ¢ at which ¢ = 1/2; conservation
of heat gives

6 4t = Constant (6)
o .

where the mean-velocity changes are neglected. Then,

Bpaxd = COnstanp/Il (D

I, = J/) o(n) dn
0]

The same is true of the annular wake in the range of £ s0 small
that & < r.

where

]

Single traverses were also made behind a straight-line heat source
for two other cases:

(a) With the line source set perpendicular to r at a radius of
1l inch, a temperature traverse was made in the r-direction,
at t = 1/2 inch (fig. 2k)

(b) With the line source set on a diametral line, a temperature
traverse was made perpendicular to r at a radius of 1 inch;
£ = 1/2 inch (fig. 25)
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Temperature Fluctuations'behind Local Heat Source

As can be anticipated, the temperature fluctuations close behind
a local heat source are quite different in nature from the velocity
fluctuations at the same point or from the temperature and velocity
fluctuations in a turbulent flow with over-all heat transfer. Since a
suitable source produces no additional turbulence,3 the velocity fluc-
tuations. should be the same as in undisturbed flow. On the other hand,
the "turbulent" thermal wake close to the source must be simply a very
narrovw laminar thermal weke which is fluctuating in direction as v(t)
fluctuates. Since all of the fluid outside of this unsteady laminar
wake is of constant temperature and the temperature fluctuations can
only be positive, the general character of the oscillogram of §(t) in
figure 26 is understandsble. These records were taken about 3/8 inch
downstream from the straight-line heat source, and about 3/16 inch off
the wake axis. All of the oscillograms were made with insufficient
compensation for the hot-wire thermal lag, in order to suppress the
(high frequency) noise and thus permit the basic form of 3(t) to
stand out. From these two oscillograms of wu(t) and check measurements
of the turbulence levels for the two cases, it appears that the source
wire has made no appreciable change in the turbulence.

Measurements of the intensity of the temperature fluctuations
across a section at & = O.k4 inch are given in figure 27. In the same
vicinity the values of u'/TU and vY/T are on the order of 20 percent.’
The extremely high values of ﬂ'/?? are not surprising since the mean
temperature difference is due only to the presence of the fluctuation.
Since the simple-resistance-thermometer theory is based upon the assump-
tion of small fluctuations compared with absolute temperature (refer-
ence 19), it is expected that these measurements are about as accurate
as the measurements of much lower 9'/§ in the hot jet (reference 10).

ANAT,YSIS OF RESULTS

Shear-Correlation Spectrum

[}
A very convenient check upon the shear-spectrum measurements can

be gotten by the simple expedient of computing the total (or "net")
turbulent shear correlation coefficient (which was also directly
measured) from this spectrum and the turbulent-energy spectrum. Again,
an elementary Fourier series treatment serves to justify (not prove)

3An ideal source would also produce no average momentum defect.
However, as mentioned previously, the momentum wakes of the local sources
were relatively so small as to be completely undetectable as close as
1/4 inch downstream.
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the intuitive idea that the total correlation coefficient Ryy 1is

slmply a weighted average of the Ryy (i e., the cosines of the phase

angles), weighted simply by the product of the square roots of the
energy spectrums of u and v. The calculation is given in appendix B,
and yields the relation ‘

Ruv = :E: (nFu nfF" )1/2 nRuv (8)
n=1 .

Unfortunately, 25 cycles per second is the lower 1limit of the
measured frequency range, so that some extrapolation must be made to
lower frequencies which contain much of the turbulent energy. Since no
theoretlcal basis yet exists to guide this extrapolation (like the
Von Kérmén formula in the case of energy spectrums), guesses had to be
made as to the maximum and minimum of reasonable-looking extrapolation
curves. These are plotted in figure 28, along with the energy spectrum
of the u-fluctuations. Since no spectrum of the v-fluctuations was
measured, the expression actually used for computing Ryy 1is

Rov = Fi(kl) klRuv dlky (9)
0

The best of the three extrapdlations tried (extrapolation ())

gives R,y = 0.46, which is satisfactorily close to the directly
measured value of 0.4k, especially since there is no reason to suppose
that the spectrum of the v-fluctuations is identical with the spectrum
of the u-fluctuations, except in the range of local isotropy.

Velocity and Temperature Spectrums

. The one-dimensional spectrums of velocity and temperature fluctu-
ations, as plotted in figures 1i-and 12, respectively, are area-
normalized; that is, they are defined such that

=]

Fi(k) d

il

1.0 (10)

Gy (k) @k = 1.0 (11)
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However, the original measurements were made on an gbsolute-value
basis, so that the total fluctuation levels u'/U and a'/e could
be used as checks on the spectrums. The spectrums as measured
were Fi¥(n1) eand Gp¥ (n1), defined such that, ideally,

(2]

F1¥*(my) dm

u? | (12)

92 (13)

I

Gy*(m)
0

Integration of Fl* as indicated in equation (12) yielded the
following:

On the axis (r = 0),
w 1/2

Fl* dny = 0.28

il

0
(u*/U = 0.22, directly measured)
In the maximm-shear region (r = 4.0 cm),

oo 1/2
Fi* dny = 0.52

all~

JO

(u'/T = 0.40, directly measured)

Similar integration of the measured temperature spectrum in the
heated Jet yielded the following:

On the axis (r = 0),
o 1/2

Gy* dnq = 0.21

|-

0

(9'/6 = 0.18, directly measured)
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In the meximm-shear region (r = 4.8 cm),

o 1/2
G* any| = 0.k

||+

(8'/8 = 0.36, directly measured)
On the Jjet axis, where conventional small-perturbation hot-wire
theory may still be moderately accurate, the agreement is satisfactory.
It should be noted in passing that these directly measured values
of §'/6 are appreciably higher then those reported in reference 10.
No explanation for this difference is apparent.

The longitudinal scale of u-fluctuations is obtainable approxi-
mately from the power spectrum: ’

Ly = % F1(0) (14)

which follows from the fundamentsl Fourier transformation,

Fi(ky) = % Ry cos (kyx) dx (15)
" Jo

in the limit kq-—>0.

An anaslogous treatment of a temperature-fluctuation field leads to
an identical expression for the longitudinal scale of J9-fluctuations:

Ay = 5 61(0) (16)

Within the accuracy of measurement, the longitudinal scale of wu(t)
was found to be the same on the Jet axis and in the maximum-shear
region:

Ly = 3.6 centimeters
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The same was true of the longitudinal temperature scales in the hot jJet:
Ay = 2.4 centimeters

In g1l these computations the measured spectrums were extrapolated
to zero wave number with a parehbola, as first suggested by Dryden
(reference 21). Approximately the same numerical velues are obtained
with the Von Kdrmdn formula illustrated in the plotted curves.

In order to compare Ly 1in the unheated jet with ‘Ax in the

heated jet, Ly may be multiplied by 1.15, the Jet-width ratio

at x/d = 20 for these two initial temperatures (reference 10). The
"corrected" Ly is then L4.15 centimeters.

It must be recalled that the Fourier transformation relation
between time spectrum and space correlation would be exactly true only
if the turbulent fluctuations at a point were due to pure rectilinear
translation (by U) of a fixed fluctuation pattern. For the free jet
flow, the extremely high turbulence levels make such a transformafion
very uncertain. Therefore, equations (14) and (16) (and the resulting
scales) cen only be considered as crude epproximations. -

The longitudinal microscale,

A = [———2 ]1/2 (17)

Rx" ( O)

may also be computed approximately from the one-dimensional power
spectrum, by

(Primes signify differentiation when applied to correlations and spectrums.)

Again, an analogous approach to temperature fluctuations gives

1 1 2 :
-3 | n Gy () dky | - (19)

X 0
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Unfortunately, the high-frequency ranges of the Gj's are too

uncertain to permit reasonsble extrapolation and the use of equation (19),
although it can be seen from figure 13 that Ay > 1. However, equa-

tion (18) has been used to compute the longitudinal velocity microscale.
Figure 29 is a plot of the integrand of equation (18). The integration
and appropriate computation give .

Ay = 0.4h centimeter .

and the same value for both radisl positions.

Since the turbulence on the axis of such a jet seems to be rather
isotropic (the experimental evidence is that uv = 0 and u' ® v'),

the lateral microscale
1/2
» = |- —2 (20)
Ry"(O)

is of the order of Ay/VZ; that is,

% 0.31 centimeter

With the assumption of isotropic turbulence on the Jet axis, it is
possible to compute the three-dimensional power spectrum F(k) from
the one-dimensional spectrum Fl(kl). Heisenberg (reference 22) has

given the inverse transformation
o]
_ 1 F(k) (.2 2 i
o) =1 | =22(K®-K?)a (21)

k2
k1

and the desired F(F1) is readily found to be

P(ky) = 2k [kaFy (k1) - Fy (i) (22)

A three-dimensional spectrum computed in this way is given in figure 30.
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The corresponding spectral transformations for the three-dimensional
isotropic fluctuation field of a scalar quantity (temperature, for
example) are simply (reference 23)

o]

G(k1) = % 9%)- dk (23)
ky
and
G(ky) = -2k;6y '(k) (2k4)

With the assumption of isotropic temperature fluctuations on the
Jjet axis, equatiogm%Qh) has been used to compute G(k).

The three-dimensional velocity and temperature spectrums on the
Jet axis are very nearly the same - provided that the isotropy assump-
tion is reasonably good. The curve in figure 30, which shows the
generg; egture of both F and G, is simply the transformation of the
Von Karmen approximations to F; and Gj.

It must be recélled, however, that F, is in the unheated jet,

while Gy is in the heated jet. Although the results of references 9
and 10 indicate no essential change in the detailed dynamics of Jet
turbulence as a result of moderate ipncrease in Jet temperature, there
is an appreciable incremse in jet width at a given x/d. As mentioned

earlier, the width ratio between 6, = 175° and 56 = 0° is agbout 1.15
at x/d = 20.

Transverse Correlation Functions
The integral ares under the velocity correlation function (fig. 15)
may be considered to glve a sort of lateral scale of turbulence in the

Jet, although the result is not associated with any particular region
in the Jjet. The conventional expression,

L, = f Ry(r)dr (25)
0 .

gives a scale, Ly = 0.67 centimeter.
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If a lateral temperature scale is defined in similar fashion,

A},=\/\ s,(r) ar (26)
0

then for the heated jet at x/d = 20 it turns out that Ay-= 0.77 centi-
meter from the function as given in figure 16.

Appropriate comparison of these transverse scales may be had if L
is multiplied by the Jjet-width ratio: 1. 15L = 0.77 centimeter, the

same value as <Ay. However, the two correlation functions that yield

these net areas are still quite different in shape. The contrast is
shown in figure 31. Clearly, even though the net areas are identical,
there is nonzero temperature correlation over appreciably greater
distances.

A rough approximation’ to the microscale of turbulehce can be gotten
by guessing at the osculating parabola for Ar = 0. In this particular
case "guessing" is more appropriate than "fitting," since the job is
entirely extrapolatory in nature. Figure 32(a) shows the vertex region
of Ry with the parabola that corresponds to

o 1/2
A= o —2 = 0.28 centimeter (27)
Ryll(o)

This value 1s in surprisingly good agreement with the 0.31 centimeter
obtained from the power spectrum on the axis. In fact, the agreement
must be regarded as fortuitous, since the difference is appreciably less
than the experimental uncertainty.

If the temperature-fluctuation field is again considered analogously,
the transverse microscale of temperature fluctuations (fig. 32(b)) is

1/2 .
1= |- —2 __ / = 0.13 centimeter (28)
Sy"(O)
For comparison, 1.15A = 0.32.

Mean Thermal Wakes behind Local Heat Sources

The rate of spread of the thermal wake close behind a local soﬁrce
of heat was first used by Schubauer (reference 12) as a means of

e ———— e e e ——— e e N
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measuring the intensity of lateral velocity fluctuations '/ﬁ A
detailed discussion of this technique has been given by Taylor (refer-
ence 13) and need not be repea.ted here. The results of such & computa-
tion, compared with direct X-meter measurements of v'/ﬁ, are as
follows:

(ii. ) (%')mke (%')x-meter

0 0.18 0.185
1 .22 .20
2 4o .30

The X-meter measurements were corrected .for the effects of both u'
and uv upon the slightly unsymmetrical meter.

It is possible to get some additional information gbout the fluctua-
tion field by computation from the turbulent-heat-transfer equation. In
particular, an estimate of the distribution IV across a section of the
thermal wake behind the line source may be made as follows.

The steady turbulent-heat-transfer equation for low velocity (negli-

gible viscous dissipation to heat), negligible molecular heat conduction,
and constant density is, in Cartesian tensor notation,

T; gzi = 2 (5%) (29)

For the region in the immediate vicinity of the jet axis, assume
that conditions approximate those in a homogeneous field of turbulenc-;
that is, V=W =0 and U = Constant = Up,y.

Then equation (29) becomes simply

= % ., 9 o '
Umaxgg«:‘gg(m-'a—g(m (30)
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The assumption of small turbulence level implies Jdu << 6Upgzy and
hence '

EM%EE%-%(W) (31)

This would be a good approximation in turbulence far behind a grid
placed in a uniform stream, but is certainly rather crude here.

The final assumption, that of similarity in the thermal wake, is

well supported by the experimental results. Then let

5_'13_&; _ f® = £(n) (32)

where A is the standard deviation of the mean-temperature distribution,
and, according to the theory of diffusion by continuous movements, is
therefore proportionsl to the standard deviation of the probability
density of v(t) as well. Specifically, for a small ¢ in a homo-
geneous ‘turbulent flow,

A=L
= £ (33)
Similarity also implies that
I = BpmasUnax ©(1) (say) (3k)
Equation (7) may be written
Bmax A = Constant (7a)

Then, with equations (32), (3%), ‘and (T2), equation (31) may be trans-
formed to

do _ ;4
Frial (n£) (35)
or, with equation (33),
dw roda
o= —~— 2 (3) (36)
T T, M

S [ m—— o Y e e e ———— = e e e e e i e e =
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Since vYTUp,, 1is constant in this epproximation,

o(n) = AN 1 £(n) + Constant
Unax

and the boundary condition, ® =0 at 1 = 0, gives finally

_w vt 8 (37)'

which is conveniently written in the form

CAMLIN 4 (38)
e U 2} 3
max max max

In figure 33 this function is plotted against ¢ / € for the traverse
1/2 inch downstream from the straight-wire heat source, across the Jet
center. :

DISCUSSION

Local Isotropy

The monotonic decrease to zero in sheasr correlation coefficient
with increasing frequency seems to be decisive evidence for the exis-
tence of local isotropy at sufficiently high Reynolds numbers. It is
interesting to note that the spectral region of negligible shear
(n; >1000 cps in the present particular determination, for example)
contains only gbout 1.5 percent of the turbulent kinetic energy in w2,
Of course, this is by no means an indication of the importance of the
existence of local isotropy in a turbulent shear flow. A more perti-
nent comparison would be with figure 29, which shows in effect dissi-
pation as a function of frequency. From this it appears that about
90 percent of the dissipation of turbulent kinetic energy to heat takes
place in essentially isotropic turbulence. This permits the use of the
Taylor expression for dissipation in isotropic turbulence (reference 24).
Of course it alsoc implies that the isotropic relation between longi-
tudinal and lateral microscales, A, = y2\, will be fairly accurate

even in the region of high turbulent shear. Furthermore, it implies =&



NACA TN 2124 27

universal dimensionless spectral function for all turbulent flows, in
the high-frequency region. For turbulence at this Reynolds number, it
appears that a universal part of the spectrum exists only for_ Xk; > 7.9,

which is well beyond the point of slope -%. In fact, the'ﬁ-% point"
in this spectrum is just at k; = 1.0.

At this point a few remarks on the sppropriste type of measurement
for verification of local isotropy may be in order. In particular, a
careful distinction must be made between the shear spectrum R, as

presented in this report and the power spectrum of the randomly fluc-
tuating quantity uv which might be measured with a multiplying circuit
followed by & frequency enalyzer.

Local isotropy specifies that restriction to a sufficiently-small
domain in a turbulent shear flow shows up isotropy in the various statis-
tical properties that are studied within that domain. It implies that
all three components of the frequency'(or wave-number) vector must be
large, and not merely the magnitude of the vector. Clearly then a good
indication of isotropy is zero correlation between orthogonal velocity-
fluctuation components; this means that the highest-frequency parts
of u, v, and w are uncorrelated with each other. Hence it is clear

that if ﬁ;?; decreases to zero, with increasing frequency, faster than
the product wu,‘'vy,' decreases to zero, local isotropy exists. In terms
of coefficient, this merely requires that pRyy decrease to zero
eventually. ‘

Now consider the fluctuating quantity uv. In a turbulent shear
flow T¥ £ 0, so that uv consists of a direct-current component with
superimposed random fluctuations. Since the conventional electronic
techniques eliminate the direct current, the quantity to be analyzed
would be uv - uv as a function of time. If local isotropy were
present, the lower frequencies of u and v would be rectified in the
muttiplying process, and therefore the oscillogram and power. spectrum
of uv - uv would have relatively great emphasis on the’ high frequencies.
In other words, if the naiyely measured power spectrum of uv were used
as an indication of loceal isotropy, it would show a trend opposite to
that of wu,vp; that is, it would decrease more slowly than the

product u,'vy'. In general, the measurement of jR,, seems like a
much more specific and direct approach than the measurement of the
power spectrum of wuv. Presumsbly, & (somewhat more complicated)

Fourier series discussion like thast in appendix B could also be carried
out for the power spectrum of uv.
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Velocity and Temperature Spectrums

The apparent identity of the velocity power spectrums Fi(ky) on
the jet axis and in the region of maximum shear is only spproximate and

has been determined only down to ki = 0.1. There still exists the
possibility of measurable divergence in the lowest wave-number range.

The good degree of agreement indicates that, in diffusing from the region
of maximum production (near the maximum-shear region) to the region of
maximum dissipation (on the jet axis), the turbulent kinetic energy has

" not done any gross migrating in the wave-number space.

On the other hand, the apparent decided difference between temper-
ature power spectrums measured on the axis and in the maximum-heat-
transfer region seems to indicate such a migration. However, the
considerable scatter at the highest measured frequencies renders
definite conclusions impossible.

Somewhat more specific conclusions can be drawn from the comparison
between one-dimensional velocity and temperature spectrums. On the Jet
axis, for example, in spite of distinct differences between these two
spectrums, it turns out that within the experimental scatter (which is
considerasble) the three-dimensional power spectrums may be much more
nearly identical. The fact that they did in fact come out to be identi-
cal over a wide range of wave number when computed from the empirically
Pitted Von Kdrmén formula must certainly be regarded as pure chance.
This is true not only because of the experimental uncerteinty, but also
because these spectrums were measured in two similar but different flows,
whose characteristic lengths probably differed by 15 percent.

Kinematic and Thermal Scales
From the extrapolated zero-wave-number intercepts of the one-
dimenjional spectrums, the following longitudinal scales were obtained
at x/d = 20:

L, = 4.15 centimeters

2.4 centimeters

Ay

This L, 1is 15 percent greater than the unheated-jet value, to allow
for the greater width of the heated jet. Thus, Ly/Ay =1.7. In a
homogeneous, isotropic field of velocity and temperature fluctuations,
it turns out (reference 23) that, if the three-dimensional power
spectrums of velocity and temperature are proportional, Ly/Ay = 1.50.
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It may also be noted that, if the measured ratio were in an isotropic
field, Ly = -21-Lx and Ay = Ay, 50 that Ly/Ay = 0.85. The ideal value
would be 0.75. Actually, the integrals of the transverse correlation
functions Ry and Sy are considerably less than the scales that

would be expected, according to these relations, in a homogeneous
isotropic turbulence.

On the other hand, the relative values of longitudinal and lateral
kinematic microscales follow the isotropic relation, A, = V2, at
least within the experimental uncertainty. This is on the order of
425 percent in the case of the parabola "fitted" at the vertex of Ry

Unfortunately, the temperature spectrum on the jet axis is not
extended sufficiently far to permit computation of longitudinal micro-
scale 1, there. The spectrums in figure 13 show only that 1y is

considerably less than Ay; that is, 1, 1is considerably less than
0.44 centimeter. It may be remarked in passing that isotropy for a
scalar quantity means equality of longitudinal and lateral correlation
functions. The lateral microscale, 1 = 0.43 centimeter, obtained by
"fitting" a parabola at the vertex of Sy seems of reasonable magni-

tude relative to 1.15A = 0.32 centimeter.

Transverse Correlation Functions

Of course, the reason Ly. and Ay as determined by integration
of functions Ry and Sy are not related isotropically to Ly and Ay

is that over most of the range of Ar the probes are in decidedly non-
isotropic turbulence. Thus, there is no reason to expect Ly = 5hx

or Ay.=.Ax, when Ly and Ay are computed from the spectrums.

An examination of the behavior of these two symmetrically measured
correlation functions shows that there is nonzero correlation over a
considerable part of the Jet, but that the relatively small scales result
from the rather extensive regions of negative correlation. This behavior
is emphasized by a comparison of Ry with the corresponding function in
some typical isotropic ‘turbulence downstream of l-inch-mesh grid (refer-
ence 25). Figure 3% shows the contrast clearly.

It is conceivable that such an extended region of negative corre-
lation is characteristic of turbulent shear flow. However, until some-
one establishes this in a shear flow whose transverse extent is very
large compared with the maximum correlation distance, it may be safer
to guess that the "excess" amount of negative correlation is simply due
to a slight irregular waving of the Jjet as a whole. In reference 9 it
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was assumed that, since Ry actually goes to zero at large values

of Ar, there is no over-all "whipping" of the jet. However, such a
conclusion does not appear to be completely warranted. ,

In the section entitled "Transverse Correlation Functions" under
ANAT.YSTS OF RESULTS, it was found that in the heated jet Ly %,Ayt On

the other hand, it is well known that the lateral rate of transfer of
heat is appreciably greater than the lateral rate of transfer of
momentum, as was first.found by Ruden (reference 26) from mean-velocity
and mesn-temperature measurements. Since diffusion is essentially
Lagrangian in nature, while L and A are Eulerian scales, the above
results are not necessarily in contradiction. The appreciably greater
distance over which Sy # O (as contrasted with Ry) may, however, be

related to the fact that the mean thermal Jet dismeter is appreciably
greater than the mean momentum Jjet diameter.

Probability Density of v(t) eand w(t)

The mean-temperature distribution close behind the straight-line
heat source on the jet axis is effectively symmetrical, and closely
resembles a Gaussian curve in shape (fig. 20); this shows that the
probability density of v{(t) on the axis is more or less Gaussian, as
in isotropic turbulence.

The mean-temperature distributions close behind the two ring heat

sources are decidedly skew. However, some of this skewness seems to

be due simply to the curvature of the line sources. Therefore, the
temperature distribution across the wake of a straight wire set tangent
to the circle T =1 inch was measured. Neglecting the effects of
mean-velocity gradient, this curve (fig. 24) is proportional to the
probability density of the radial velocity fluctuation v(t) 1in the
shear region. It is seen to.-be slightly skew; the skewness factor

;§ s -0.1
CIZCA

S

1l

is computed directly from this curve. The thermal wake measurements of
Skramstad and Schubauer behind a line source in & turbulent boundary
layer (reported in reference 15) show a skewness of 0.38. The 4dif-
ferences in sign and magnitude of these two skewness factors suggest
lateral turbulence-level gradient as the cause. The gradients in v'/ﬁ’
are of opposite sign in these two flows.
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Calculation from figure 25 shows that the probability density of the
tangential fluctuation w(t) 1is symmetrical. It may be noted that on the
axis of such an axially symmetric flow there 1s no distinction between
radial and tangential velocity fluctuation; hence figure 20 also applies
to w(t) on the axis.

Temperature Fluctustions behind Local Heat Source

The extremely high temperature-fluctuation levels (8y/§'> 1.0)
encountered in the wake of the line heat source are easily understood
from a brief consideration of the nature of the temperature field.
Close behind the source, there is Just a single narrow laminar thermal
wake which is being blown in random deviations from the &-direction by
the turbulent fluctuations. The gross turbulent thermal wake is simply
the wedge-shaped region over which this relatively narrow wake wanders.
Hence the total thermal signal at any fixed point in the gross wake
consists simply of a series of pulses, where each pulse corresponds to
an occasion upon which the laminar wake swept over the point. Obviously,
the frequency of occurrence of pulses will decrease monotonically with
increasing transverse distance from the center of the gross wake.

If this type of temperature signal is represented schematically by
periodic square pulses of height h, width Jj, and fundamental wave
length 7T (fig. 35), then it can be easily deduced that the fluctuation
level is

t
LI A
2] J

vhere it is recelled that § =6 -~ 6 by definition:
Two pulse spacings of iﬁterest are
(1) T =2J; then 9'/F = 1.0
(2) T—>w; then 3'/F >
Hence, the measured results for 9! @ seem quite reasonable in

both order of magnitude and in qualitative behavior across the gross
thermal wake of the local heat source.

The distribution of §V/OpgyUmayx computed from the thermal wake,
plus the availasbility of the measurvements of 9'/Op,, and v'/TUpgy,

suggests the computation of the heat-transfer correlation coeffi-
cient Jv/9'v'. Unfortunately, when the results of figures 33 and 27
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are used, a part of the correlation-coefficient distribution reaches
impossible values (slightly above unity). It must be concluded that
the absolute values of §V/OpayUmax &are too inaccurate for such a

computation.

Sources of Error

Aside from the specific instances mentioned earlier in this
section, the sources of experimental error are much the same as outlined
on pages 27 to 28 of reference 10. Additional uncertainties arise in
the spectrum measurements, especislly in the higher-frequency range,
because of (a) rapid changes in the calibration of the sound analyzer
(band pesk response against frequency, fig. 7) and (b) slight static
friction of fluxmeter bearings. '

In general, it should be emphasized that measurements by conven-
tional (small-perturbation) hot-wire anemometry in a flow of this high
level of turbulence cannot be considered as accurate absolute-value
measurements. Even on the jet axis, where the level is a minimum and
conditions are relatively steady, there is no reason to believe that
absolute values are better than within, say, +10 percent of the "correct"
values. However, relative behaviors are undoubtedly determined, and
dimensionless measures of the type of correlation coefficients are more
accurate than absolute values.

None of the measurements reported here have been corrected for
finite length of hot-wires.

SUMMARY OF RESULTS

From measurements in a round turbulent jet at room temperature of
the shear correlation coefficient as a function of frequency, of
velocity and temperature fluctuations with and without jet heating,
and of the mean thermasl wakes behind local heat sources, the following
statements may be made:

1. The Kolmogoroff hypothesis of local isotropy is verified for
the shear flow in a round turbulent Jet. This is concluded from the
monotonic decrease to zero of the shear-correlation spectrum (unvn/un'vh')

with increasing frequency n. ‘

2. The one-dimensional power spectrums of longitudinal velocity
fluctuations and of temperature fluctuations appear to be basically
different.
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3. The three-dimensional power spectrums of velocity and temper-
ature fluctuations on the Jet axis seem to be roughly alike - if the
assumption of isotropy in this region be true. It may then follow that
the difference in the one-dimensional power spectrums is & direct
manifestation of the fact that velocity and heat are vector and.scalar
quantities, respectively.

k. The ratio of longitudinal to lateral scale (for both velocity
and temperature fluctuations) is considerably larger than would follow
from isotropy. Longitudinal scales are measured on the jet axis, while
lateral scales involve a traverse of most of the fully turbulent core-
of the jet. . .

5. The ratio of longitudinal to lateral kinematic microscale on the
Jet axis is about equal to the isotropic wvelue.

6. The longitudinal thermal microscale (from one-dimensional power
spectrums) is less than the longitudinal kinemstic microscale, but the
lateral microscales (from correlation measurements) have the opposite
relation; that is, the thermal is greater than the kinematic.

7. The probability dénsity of the radisl fluctuation v(t) on the
Jet axis 1s effectively Gaussian. The probebility density in the shear
reglon 1s slightly skew.

8. The temperature-fluctuation field in the wake behind a local
heat source consists of a randomly waving narrow laminar thermal wake.
Hence the temperature signal at a fixed point is a random-pulse type
of function. Its fluctuation Intensity is on the order of 100 percent
on the center line, and increases toward the edges.

The Johns Hopkins University
Baltimore, Md., August 17, 1949



34 | NACA TN 212k
AFPENDIX A
HEAT LOSS FROM A WIRE AT VARIOUS AMBIENT TEMPERATURES

In figure 3 of reference 19 a rough check was made on the
temperature-variation first term in King's (reference 27) equation
for the steady static heat loss from a cylinder perpendicular to a
fluild stream, at low Reynolds numbers. The conventional form is

R _ a3\ ()
R - Ry
where
A = cl-yﬂgf
~ Roo*
B=cp d*cp,pk*
and
R wire resistance
Ry wire resistance at ambient fluid temperature
wire resistance at 0° C
1% wire lengtﬁ
ax wire diameter
o* temperature coefficient of change of resistivity of wire
material
k* thermal conductivity of fluid at ambient temperature
p specific heat of fluid at ambient temperature
p density of fluid af ambient temperature
i current

cy,Co empirical constants
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In reference 19 the check on A as a function of temperature was
made by assuming the second term in equation (Al) to be exact in its
temperature variation. Then each measured calibration point at any
veloclty end temperature led to a value for A.

The present check was carried out more completely; a full calibra-
tion curve was run for each ambient temperature. From this, both A
and B were determined. TFigure 36 gives the results compared with
King's predicted veriastion, using physicel constants from reference 28.
Each point corresponds to a calibration. The vertical line through a
point obviously does not represent the over-all uncertainty; it simply
shows the range of values that could be gotten by drawing different
reasonable-looking straight lines through the same set of original
calibration points. From the figure it can be seen that King's equation
predicts the temperature variation of A quite well. The changes in B

the slope of the calibration line in the plot of against VU

are so small that the experimental scatter is as great as the changes
predicted for these temperature differences.
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AFPENDIX B

MEASUREMENT OF SHEAR-CORRELATION SPECTRUM

The two voltage signals from an ideal symmetrical X-meter are

e = au + Bv
‘ (B1)
e, = au - Bv
Suppose that the velocity fluctuations are periodic:
o0 -
u=Zancos (2mt + ¢n)
n=1
» . (B2)

<o
v = Z b, cos (2mt + ¥p)

/ n:l

Of course, there would be no loss in generality if ¢n or VY, were

taken as zero.

The quantity to be measured is

_ UnVp |
nhuy = =S (B3)

For two simple harmonic functions the correlation coefficient is simply
the phase angle. Thus,

pRuy = cos (fy - V) (BY)

Substitution of equations (B2) into equations (Bl), followed by
trigonometric transformation, gives

e = g[(wan cos @, + Pby cos \I&l) cos 2mt -

(ean sin @, + Bby sin ¥p) sin 21cnt] (B5a)

“
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[oed

I ep = :;: [(aan cos @y - Bby cos ¥n) cos 2mt -

(aap sin @n - Bby sin V) sin 2mnt] ~ (B5Db)

When these two signals are put separately through a narrow band-
pass filter that passes only the nth harmonic, the two’ output voltages
may be represented as

ne1 = Kikaan cos @, + Bby cos ¥y, ) cos 2mt -
(eay sin $, + Bby sin ¥n) sin Qﬁnt] (B6a)
nep = K[Kaan cos @ - Bbp cos ¥n) cos 2mmt -

(a8n sin @y - Bby sin ¥y) sin 2mt ] (B6b)

where K is an attenuation factor.

For brevity, write

o

ne1 = K(&y cosiznnt - By sin 2mt) (Béc)

nes = K(Cn cos 2mnt - Dy sin 2mt) (B64d)

These filtered signals go next into the vacuum-thermocouple unit,
+which puts out the mean-square values,

L nelE = Ang cosz(ant) - 2ApBy cos (2mnt) sin (2mt) +

Kl

B,2 sin? (2mt)

g e —
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l ———
= ne22 = CnE cos2(2mt) - 2C,Dp cos (2mnt) sin (2mnt) +

Dn2 sin°(2mt)

where K' 1s an over-all attenuation factor.

But, cos2 m sin? —%—,

and cos sin = 0, over a large number of
wavelengths. Thus, '

~ K! -
n":‘l2 ~ (An2 + Bn2)

(B7)
x K' 2 2
neo? -y (Cn + Dy )
Then, within the spproximation,
Kl
ne1? - nep? = 5 (8n2 - o2 + B2 - Dy?) (88)

and when the expressions for A, B, C, and D are substituted, it
turns out that

n312 - ne22 = 2K'cx,Banb1; cos (¢n - 1~l»fn) - (B9)

The necessity of determinirig o and B 1is ordinarily avoided with
a symmetrical meter, if only the correlation coefficient is required.

The sum and difference of the two wire voltages are

e + ey = 20u = QGi an cos (2mt +;?5n)T
1
1 (B10)
[oe]
e; - ep = 2Bv = 2B E b, cos (2rxnt + ¥p)
1
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Filtering gives

oo + ep) = 2Kaa, cos (2rnt + @)

2KBb, cos (2mmt + V)

n(el - e2)
Pagsage through the vacuum thermocouple gives

n(e1 + ep)® = 2K'ofay®
\ (B11)
2K 1p2b, 2

n(el - €2 )2

Combination of equations (B1l), (B9), and (BL4) gives the final
result:

2 2
n®1" - n®2

nfuv = T (B12)
[n(el +ep)® (o1 - 32)2]1/2

The computation of total-shear correlation coefficient from shear-
coefficient spectrum suggests itself as a useful check possibility:

Ryy = wv/u'v? (313)

with the Fourier series for u and v,

—— w 9
w2z =1> 42
277
> (B1Y)
— [v.]
RS DI,
1
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and the instantaneous cross product can be transformed to

o0 o

uv = Z Z anby(cos Pn cos 2mt - sin @, sin 2mnt) X

n=1] m=1

i

(cos \b’m cos 2mnt - sin ¥ sin Emt)

The time average of thls expression is
1S | '
uv = EZ apbp(cos @ cos ¥y + sin @, sin V,)
n=1

or

g apby cos (¢n - ‘Vn) ‘ (B15)

.

l\)ll—'

o
1
u'v =35 ; anbp nRuv

In terms of the Fourier coefficien'ts »

Za'nb nfuv

(YL— "2 Zb )1/2

(B16)

o . «© :
But nFu = a.nz/ § an2 and pF, = bna/ E bn2 are simply the normalized
1 1

one-dimensional energy spectrums of u and v, respectively. Therefore,

Ruv = Z@ u o v) (B17)

n=1
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Figure 1.- Schematic diagram of 1-inch hot-jet unit,
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Figure 2.~

The jet unit.
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Figure 11.- One-dimensional power spectrums of u(t) measured in 1-inch
unheated jet at x/d = 20. Computed scales: L, = 3.3 centimeters for

both stations, Ay = 0.31 centimeter for both stations.
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Figure 15.- Symmetric transverse correlation of u, measured about axis at
x/d = 20 in 1-inch unheated jet. Ry = uluz/lzz.
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Figure 16.- Symmetric transverse correlation of 4, measured at x/d = 20 in 1-inch heated jet.
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Figure 33.- Thermal wake behind straight-line heat gsource. Temperatura-velocity correlation computed fr
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- Figure 34.- Transverse velocity correlation functions, R.y = uluz/{;z in round jet; g = uluz/l-zz in
isotropic turbulence.
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Figure 35.- Simulatioﬁ of temperature signal close behind local heat source.
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Figure 36.- Variation of hot-wire constants with air temperature.
( )p, room temperature,
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